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Abstract
The behaviour of a singlet two-magnon bound state in an S = 1/2 alternating
Heisenberg antiferromagnetic chain is investigated by a quantum self-consistent
theory with the help of the bosonization technique in the continuum limit
approach. The singlet two-magnon bound state exists for any dimerization
δ > 0 at total momentum q = 0. Its dispersion relation is given analytically
in the vicinity of zero momentum. In the case of weak dimerization, the
binding energy of the singlet two-magnon bound state monotonically increases
with increasing dimerization parameter. Our results are consistent with recent
experimental data of CuGeO3.

PACS numbers: 7510J, 7510H, 7540

The alternating Heisenberg chain (AHC) is a simple quantum spin system. It is a
straightforward generalization of the uniform Heisenberg antiferromagnetic chain. The AHC
has a rather complicated spectrum of states at higher energies, including multimagnon continua
and bound states, and has been used to model the magnetic behaviour of a wide range of
materials.

On the other hand, the AHC may also arise as a result of the spin–Peierls (SP) effect. A
spontaneous spatial dimerization in the one-dimensional (1D) antiferromagnet results in an
AHC. CuGeO3 [1] is a typical SP chain, although interactions beyond nearest neighbour are
also thought to be important. Pure CuGeO3 has a SP transition at TSP = 14.3 K. Below TSP, the
system is in a dimerized spin singlet state, and the gap of spin triplet excitations is 	 ≈ 24.5 K.
Kuroe et al [2] observed additional peaks in the Raman intensity on cooling below TSP for
CuGeO3. The lowest Raman excitation in the dimerized phase was observed at 30 cm−1, i.e.
slightly below 2	. Previously, it was indicated that a singlet excitation might result from
a bound state of two triplet excitations [2]. In particular, the observation of a two-magnon
continuum in CuGeO3 with an onset close to 2	 [3] has motivated recent theoretical studies
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of the continuum and two-magnon bound states in the AHC [4–7]. The existence of well
defined magnon modes, i.e. two-magnon bound states which split from the continuum, has
been recently addressed by Uhrig and Schulz [4] within an RPA. They found evidence in the
whole range of dimerization (δ > 0) for a singlet (S = 0) bound state below the continuum
for all total momenta q and predicted a triplet (S = 1) bound state around q = π/2 (the
zone boundary) for not too small δ. By numerical diagonalization, Bouzerar et al [5] similarly
concluded that the S = 1 two-magnon bound state only exists for a range of q around the zone
boundary, but, inconsistent with the above, there is no well defined singlet excitation at q = 0.
Recently, by using perturbation theory and numerical methods based on multiple precision
programming, Barnes et al [6] obtained the singlet bound state for all q and the triplet bound
state only for a range of q around π/b (equivalent to the q = π/2 point, the zone boundary),
where b represents the length of the unit cell. In addition, Fledderjohann and Gros [7] searched
for evidence of the bound states in a numerical study of the dynamical structure factor for any
finite value of δ on chains of up to L = 24, and concluded that a two-magnon bound state
does indeed lie below the two-magnon continuum for any δ > 0. Very recent Monte Carlo
studies [8] also showed the existence of massive singlet excitation in the AHC. As a result, it
is highly desirable to give an analytical approach to studying the possible two-magnon bound
states.

It is well known that the SP system in the case of weak dimerization can be mapped onto a
1D sine–Gordon (SG) model via the Jordan–Wigner transformation and bosonization [9]. On
the other hand, in recent years an analytical quantum self-consistent theory [10] was developed
to study the low-energy excitation of the SG model. Moreover, it was successfully used to
study a two-dimensional classical Coulomb gas [11]. The main advantage of the theory is
that the infrared divergence of the SG model can be effectively treated and the low-energy
excitation, such as the single-particle excitation spectrum and bound states, can be obtained in
a self-consistent way. In this Letter we investigate the singlet two-magnon bound state in the
AHC with the help of this method.

The AHC Hamiltonian is

H =
Nd=L/2∑
i=1

(J S2i−1S2i + αJ S2iS2i+1) (1)

whereNd is the number of independent dimers or unit cells, which are coupled by the interaction
αJ , with J the coupling within each dimer. We impose periodic boundary conditions, with
identified spins at both sites 1 and L+1, and assume that J > 0 and 0 < α < 1. An equivalent
form often used in the discussion of SP transitions is written as

H =
N∑
j=1

J [1 + (−1)j δ]SjSj+1 (2)

which is related to equation (1) by J = (1 + α)J /2 and δ = (1 − α)/(1 + α).
Following the standard steps of the Jordan–Wigner transformation and bosonization, we

obtain the quantum SG Hamiltonian, which describes large-distance behaviour of a weakly
dimerized system [9, 12],

H = 1

2

∫ [
(vK)P 2 +

( v

K

)
(∂xφ)

2
]

dx − C

∫
cos gφ dx (3)

where v is the spin wave velocity and g = √
2π . P is the momentum density field conjugate to

φ, with the commutation relation [φ(x), P(x ′)] = iδ(x − x ′). The coefficients v, K and C are
related to J and δ by v = 2

√
AB, K = √

B/A/2π and C = δJ/a with A = Ja(1+3/π)/8π ,
and B = 2πJa(1 − 1/π), where a is a short-distance cutoff or lattice spacing. For the
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convenience of the following discussion, by rescaling the field operator and its conjugate
momentum, equation (3) can be further transformed into the standard SG model,

H = v

∫ [
1

2
(∂xφ)

2 +
1

2
P 2 − m0

a2β2
cosβφ

]
dx (4)

where m0 = Ca2/2A = 4π2δ/(π + 3) and β2 = (B/A)
1
2 = 4π

√
(π − 1)/(π + 3). The

canonical commutation relation remains unchanged.
The excitation spectrum of the SG model at β = √

2π is exactly known [13, 14], which
provides valuable information about the spectrum consisting of single-soliton and single-
antisoliton excitations with masses Ms = Ms = M and two bound states (breathers) with
masses M1 = M and M2 = √

3M . We note that in a bosonized picture of the fermonic
theory [15, 16] a particle, a hole and an exciton correspond to a soliton, an antisoliton and
a breather mode, respectively. The single-particle excitation (one magnon) and the single-
hole excitation carry Sz = 1 and −1, respectively, while the two exciton-like particle–hole
(two-magnon) bound states have opposite parity (Sz = 0) in spin language. The two-magnon
bound-state mode with lower energy is degenerate with the two one-magnon excited states,
and these three excitations correspond to a triplet excitation branch. An applied magnetic field
would split this triplet into its three components. Another two-magnon bound state with higher
energy has its counterpart in a spin singlet excitation [12]. We will focus our attention on the
latter below.

The ground state of equation (4) has been well studied in [10]. Choose a trial ground
state: |G〉 = exp

[∑
k(γk/2)(bkb−k − b+

k b
+
−k)
]|vac〉, where bk is the Fourier component of

the Bose field in momentum space and |vac〉 denotes the vacuum state; γk is a variational
parameter, which can be determined by the stable point of the ground-state energy. As a result,
the ground-state energy per site can be obtained as

E0 = v

(∑
k

|k|
2

cosh(2γk) − m0

a2β2
ξ

)
(5)

with ξ = exp
(−β2/4

∑
k e−2γk /|k|). The variational parameter, γk , is determined by

∂E0/∂γk = 0: γk = 1
4 ln[1 + m0ξ/(a

2k2)]. Substituting γk into ξ , then ξ is given self-
consistently by

ξ = exp


 β2

β2 − 8π
ln

(√
ξ +

1

m0
+

√
1

m0

)2 . (6)

The one-magnon excited state takes the form |ψ1(k)〉 = b+
k |G〉. After straightforward

calculation the expectation value of the Hamiltonian in the one-magnon excited state yields
E1(k) = E0 + ω1(k), where the one-magnon excitation spectrum is

ω1(k) =
√
v2k2 + 	2

1 (7)

with 	1 = vµ representing the energy gap of one-magnon excitation and µ = √
m0ξ/a.

Similarly, the two-magnon state can be constructed by the action of two creation operators
on the ground state. We may write the general two-magnon state as [17]

|ψ2(p)〉 =
∫

dk .(k)b+
p+kb

+
p−k|G〉 (8)

where q = 2p is the total wavenumber which is still a good quantum number. The amplitude
.(k) will be determined by the variation method. The expectation of the Hamiltonian in the
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state equation (8) becomes

E2(p) = 〈ψ2(p)|H |ψ2(p)〉
〈ψ2(p)|ψ2(p)〉

= E0 + ω2(p). (9)

The energy of the two-magnon state relative to the ground state is given as

ω2(p) = v∫
[.(k)]2 dk

∫ [√
(p + k)2 + µ2 +

√
(p − k)2 + µ2

]
[.(k)]2 dk

− vβ2µ2

16π
∫

[.(k)]2 dk

{∫
.(k) dk

[(p + k)2 + µ2]
1
4 [(p − k)2 + µ2]

1
4

}2

. (10)

The amplitude .(k) can be determined by the variation method: the result is an integral
equation which is just the secular equation in the two-particle subspace [17]. Finally, we
obtain a equation for ω2(p) as

1 = β2µ2

16π

∫ [√
(p + k)2 + µ2

√
(p − k)2 + µ2

]−1

√
(p + k)2 + µ2 +

√
(p − k)2 + µ2 − ω2(p)/v

dk. (11)

For the bound state in this Letter, we first consider the case of the static centre of mass, i.e.
p = 0. The energy gap of two-magnon excitation is that of 	2 = ω2(0). For 	2 < 2	1,
equation (11) becomes

8π

β2
= 1

2τ

[
1√

1 − τ 2

(
arcsin τ +

π

2

)
− π

2

]
(12)

with τ = 	2/2	1. The binding energy Eb of the two-magnon bound state is defined by

Eb = 2	1 − 	2. (13)

For the general case of p 	= 0, it is difficult to obtain an exactly analytical formula for the
dispersion of the two-magnon bound state. Instead, we can expand ω2(p) around ω2(0) up
to second order, which is presumably the minimum of the energy of the two-magnon bound
state. By a straightforward procedure starting from equation (11), the final form of ω2(p) is

ω2(p) = ω2(0) + 0(τ)
v

µ
p2 + O(p4) (14)

where

0(τ) =
{
π

2

[
− 1

2τ
+

1

τ 3
+

2τ 2 − 3

τ 3(1 − τ 2)3/2

]
+

1

τ 2(1 − τ 2)
+

2τ 2 − 3

τ 3(1 − τ 2)3/2
arcsin τ

}

×
[

π

2τ 2
+

1

τ(1 − τ 2)
− 1

τ 2(1 − τ 2)3/2
(arcsin τ + π/2)

]−1

. (15)

Equations (13) and (14) are the main results in this Letter. It is well known that the AHC
undergoes a transition at δ = 0, and a gap opens in the spectrum of elementary excitation.
The power law which characterizes the opening of the one-magnon gap has been estimated by
many authors [9,18,19]. For the case of δ � 1, the same results are obtained analytically [20].
We wish to connect the calculated results with recent experimental data of CuGeO3. In order
to fix the parameters J and δ, we follow the analysis of Riera and Dobry [21], which is based
on susceptibility data and calculations of Lanczos diagonalization techniques by Bouzerar
et al [22], to take J = 160 K and δ = 0.012, respectively. It then follows that the singlet–
triplet gap is equal to 	1 = 0.140J , close to 	

exp
1 ≈ 2.15 meV = 0.156J as measured by

INS [23], and the singlet–singlet gap is equal to 	2 = 0.262J , which is consistent with the



Letter to the Editor L263

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.15

0.20

0.25

Ε b/
J

δ

Figure 1. Binding energy of the singlet two-magnon bound state versus δ at q = 0 in units of J .
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Figure 2. Dispersion ωi(q) = Ei(q)−E0 of the two excited modes for δ = 0.1 in units of J . The
solid curve is ω2 and the dashed curve corresponds to ω1. The dotted curve represents the edge of
the two-magnon continuum.

lowest Raman excitation energy 	
exp
2 = 30 cm−1 = 0.268J [2, 24]. From equation (12) we

also obtain the singlet–triplet gap ratio R = 2τ = 1.87 compared with Rexp = 1.72. The
dependence of the binding energy of the singlet two-magnon bound state on dimerization is
shown in figure 1 at q = 0, in reduced units of J . It is found that the binding energy Eb
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monotonically increases with increasing dimerization, δ, implying the existence of the singlet
bound state at q = 0 for any δ > 0.

In figure 2 we show the dispersion of the singlet two-magnon excitations for 0 < q < π/2
considered appropriate within the present method and fixed δ = 0.1. From figure 2 we see
that the singlet two-magnon bound state always appears below the edge of the two-magnon
continuum. It is concluded that the singlet two-magnon bound state exists for a considerable
range of momentum, which is also qualitatively consistent with [4] and [6].

In summary we have presented a theoretical method which combines the bosonization
technique and the quantum self-consistent theory to study elementary excitations of the
S = 1/2 alternating Heisenberg antiferromagnetic chain. It is found that a singlet two-magnon
bound state exists below the two-magnon continuum for δ > 0 in the S = 1/2 alternating
Heisenberg antiferromagnetic chain. The binding energy of the singlet two-magnon bound
state increases with increasing dimerization for weakly dimerized chains. Our results of the
singlet two-magnon bound state are consistent with recent experimental data of CuGeO3.

This work was supported by the National Science Foundation.
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[19] Spronken G, Fourcade B and Lĕpine Y 1986 Phys. Rev. B 33 1886
[20] Xue-Fan Jiang, Qing Jiang and Zhen-Ya Li 2000 Phys. Status Solidi b 219 151
[21] Riera J and Dobry A 1995 Phys. Rev. B 51 16 098

Riera J and Koval S 1996 Phys. Rev. B 53 770
[22] Bouzerar G, Kampf A P and Schönfeld F 1997 Preprint cond-mat/9701176
[23] Nishi M et al 1994 Phys. Rev. B 50 6508

Regnault L P et al 1996 Phys. Rev. B 53 5579
[24] van Loosdrecht P H M et al 1996 Phys. Rev. Lett. 76 311


